
Competing with the Best 
Using Auto-tuning to Refine the Performance of Chapel 

SC13 Chapel Lightning Talks 

Ray Chen <rchen@cs.umd.edu> 

University of Maryland 



Brief Background 

2 

• Prior study of HPC languages [1] 

– Compared emerging languages along with mature 

– Used a proxy application as the control 

– Awarded IPDPS 2013 best paper 

 

• Proxy Application: LULESH 

– Solves a Sedov blast problem 

– Typical of HPC hydrodynamics codes 

– Indirection arrays to create an unstructured mesh 

[1] Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z DeVito, R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, C. H. Still, Exploring 
Traditional and Emerging Parallel Programming Models using a Proxy Application. In Proceedings of 27th IEEE International Parallel & Distributed Processing 
Symposium, Boston, MA, pages 1-14 



Chapel vs. OpenMP 

3 

• Chapel wins for programmer productivity 

– 1108 SLOC vs. 2403 for OpenMP 

• OpenMP still better for run-time performance 



Controlling Parallelism 

4 

• Kernel vs. user-space threads 

– User-space threads dominate for Chapel’s LULESH 

• Kernel-space threads always slower in our tests 

– Optimal thread count difficult to predict 

• User-accessible knobs built into Chapel 

– Task count per data parallel loop 

– Data decomposition granularity 



Input Parameter Sensitivity 

5 

• Exhaustive parameter sweep for two data sets 

 

 

 

 

 

 

• Optimal points are not exchangeable 

– Results in 20% or 80% slowdown 

Problem Size 323 Problem Size 483 

Optimal: (88,2176) Optimal: (104,1796) 



Auto-tuning Results 

6 

• Search converges after 10 search steps 

• Performance gap narrowed 34-54% 

– Overall performance improvement 13-24% 

Problem Size 323 Problem Size 483 

Improvement: 
54.0% w.r.t. OMP 
(24.4% Overall) 

Improvement: 
34.4% w.r.t. OMP 
(14.2% Overall) 

Problem Size 1283 

Improvement: 
34.7% w.r.t. OMP 
(14.3% Overall) 



Conclusion 

7 

• Chapel can be within 29% of OpenMP 

– All from auto-tuning (no source code changes) 

– Improves upon 2-4x slowdowns of previous study 

• On the horizon 

– Managing tasks among concurrent parallel loops 

• Complicated, if not impossible to do statically 

• Even worse for nested parallel loops 

– Auto-tuning as a solution 

• Dynamic problems call for dynamic solutions 


